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LETTER TO THE EDITOR 

Broyden's method for self -consistent field convergence 
acceleration 

G P Srivastava 
Physics Department, New University of Ulster, Coleraine, N Ireland BT52 lSA, UK 

Received 7 February 1984 

Abstract. Broyden's method for self-consistent field convergence acceleration, recently 
used by Bendt and Zunger in the band-structure calculation of solids, is reviewed and a 
simpler computational scheme is presented. 

Recently, Bendt and Zunger (1982) have derived a variational principle for obtaining 
the minimum of the density-functional total energy of solids and molecules. For their 
variational principle to be equivalent to the variational principle derived by Kohn and 
Sham (1965) these authors have obtained a sufficient condition: 

F ( p )  = v - p  = 0, (1) 
where p is an independent vector variable representing the electronic screening 
potential and v =  v(p) is the output screening potential to be determined from p. 
Equation (1) is also the condition for the self-consistent band-structure calculation of 
the system for which the total energy is required. 

The system of simultaneous nonlinear equations F = O  in equation (1) provides a 
cherished topic in numerical analysis (see e.g. Byrne and Hall 1973). Of several 
iterative methods available to solve systems of nonlinear equations, the most sophisti- 
cated one is Broyden's updated version of the quasi-Newton-Raphson iterative pro- 
cedure (see, for example, Ralston and Rabinowitz 1978). In this procedure one 
approximates F( p )  at various iterations, writing for the mth iteration 

F ( p )  =F(p"') +J"'(p -p"'). (2) 
Further, one assumes that for the left-hand side to vanish the right-hand side must 
also vanish, which yields the following quasi-Newton-Raphson method for the desired 
solution 

(3)  p ( m + l )  = p ( m ) -  ( m )  -1  
[ J  1 Fb"'). 

It is very well known that the success of this iterative procedure depends entirely on 
how close the initial approximation for the Jacobian J'" = aF/ap"' is to the true 
solution: if the initial approximation is not quite close to the solution, often the iteration 
will not converge. Finding a good initial approximation to the Jacobian is a serious 
problem. For p = { pl , p 2 ,  . . . , pN}, with a large value of N (which is usually the case 
in the context of the present discussion), an explicit evaluation and inversion of the 
initial Jacobian may itself involve excessive computational effort and storage require- 
ments. 
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Broyden's modification (Broyden 1965) of the quasi-Newton-Raphson iterative 
procedure is extremely helpful in achieving a fast convergence rate with a moderately 
good initial guess for the Jacobian. According to this scheme one generates an 
approximation $ ( I )  to the initial Jacobian J ( l )  and for m > 1 it is required that 9(m) 
satisfies the following two conditions 

(9 g = ~ ( m ) - ~ ( m - l ) -  $ ( m ) ( P ( m ) - P ( m - l ) )  = o  (4) 

(ii) Q = I19(m)-9(m-1)112 be minimised. ( 5 )  

The consideration (ii), subject to (i), can be made by using the method of Lagrange 
multipliers. Consider a functional 

K = Q + A T g ,  (6) 

where A is a Lagrange multiplier vector. Then the variational principle aK/a9(" = 0 
gives 

When compared with equation (4), this gives the desired result for A, which when 
used in equation (7) yields the following updating procedure for $ ( m )  

). (7) $ ( m )  = $ ( m - l ) + t A T ( P ( m ) - P ( m - l )  

This is called a rank-one updating procedure, as the rank of $ ( m ) -  9(m-1) is one. Thus 
equation (3) is used with equation (8) to achieve a fast rate of iterative convergence. 

The initial guess 9 ' l )  can be made in accordance with the problem at hand. In the 
present context of band-structure calculation, it can be shown that the Jacobian is the 
negative of the dielectric kernel. Thus a simple guess for 9") may be the diagonal 
form of the Thomas-Fermi screening 

(9) 
k, being the Fermi momentum, and G is a reciprocal lattice 

9("= -( 1 + k 2 / G 2 ) f =  -( l /a(  G ) ) f  

where k = 
vector. An even simpler guess would be a diagonal constant matrix 

a ) i  (10) = -( 1/ 

where 0 < a < 1.  The particular choices in equations (9) and (10) without the updating 
scheme of equation (8) are, respectively, Kerker's scheme (Kerker 1981) and the 
potential mixing scheme (Bendt and Zunger 1982, Dunlap 1982, Dederichs and Zeller 
1983). The choice of a in equations (9) and (10) should be such that Z E 1  [Fj2)I2< 
I;, [Fj"I2 is satisfied (Powell 1970). 

Bendt and Zunger have used Broyden's scheme to achieve rapid self-consistency 
in the band-structure calculation of a few semiconductors. However, in many applica- 
tions, when N is very large, the updating scheme of equation (8) is not desirable on 
two counts: (i) storage of N 2  elements of 9(m) may be excessive, and furthermore, 
(ii) the use of equation (3) requires inverting the huge matrix 9(m). Fortunately, both 
these problems can be dealt with if the following computational scheme is adopted. 

Let F?g(m) be the inverse of 9(m). Then using Broyden's second method, the updating 
formula for F ? ( ~ )  is 
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This equation, with the help of equation (9) or ( lo) ,  can be expressed as 
@ I )  = D = -pf 

With this equation (3) can be expressed as the following vector equation 
p ( m + l )  = p ( m ) + l ) ( m ) ,  

where 

l)(m) = p F ( m ) -  2 cmiu(i). 

i = 2  

In equations (13) and ( 1  5) we have 

Thus the iterative solution of F ( p )  = O  can be obtained by using Broyden's method 
which in the present scheme involves only storing a few vectors of length N. 

To test the convergence rate of Broyden's method we have calculated the electronic 
band structure and the total crystal energy of InP using a local version of the ab initio 
pseudo-potentials of Zunger and Cohen (1978). Exchange and correlation were treated 
in the local density formalism using the formulation of Hedin and Lundqvist (1971). 

Figures 1( a ) ,  ( b )  show the results of convergence test for, respectively, the screening 
potential V,, and the total energy E,,, with the fixed Jacobian schemes of equations 
(9) and (10). It is clearly seen that both V,, and E,,, diverge if no mixing of input 
and output potentials is used: i.e. when 9 ( m )  = 9") = -f The results start to converge, 
though slowly, even for a small mixing of input and output potentials. In the present 
case of study it is found that a =0.5 (a 50%-50% mixing of the potentials) gives a 
very fast convergence. The Thomas-Fermi approximation for the Jacobian gives a 
better convergence rate than using the simple mixing case with a = 0.8 (20% input 
mixing) but shows somewhat slower convergence rate than using a = 0.5. Very recently, 
Dederichs and Zeller ( 1983) have rigorously analysed the simple mixing procedure 
and have obtained limits on a for this procedure to converge. An optimum value of 
a may depend on how good the starting input potential p is. 

Broyden's method of updating the Jacobian was found to accelerate the convergence 
rates in both V,, and E,,, for all the cases studied in figure 1 (except a = 1).  As can 
be inferred from equations (14) and (15), acceleration of the convergence will start 
at the third iteration. In figure 2 we show the comparison of Broyden's method with 
the potential mixing schemes using the fixed Jacobians 9g) and 9 ( m )  ( a  = 0.8). For 
a stability of Ryd in E,,, Broyden's method saves three iterations in this 'easy' 
case of two atoms/cell. For difficult cases (e.g. in slab surface calculations) this method 
must prove very time saving on the computer. However, if a value of a has been 
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Fig. 1. Convergence studies on (a )  the screening 
potential and (b)  the total energy of InP using the 
fixed Jacobian scheme. Curves 1-4 use equation (10) 
with a = 1.0, 0.95, 0.8 and 0.5 respectively. Curve 
5 uses equation (9) 

F i r e  2. Convergence acceleration using Broyden's 
method. Curves 2 and 4 use equation (10) with 
a =0.8 and equation (9), respectively, for 4"'. 
Curves 1 and 3 correspond to curves 2 and 4 without 
Jacobian update. 

found for which the simple mixing scheme converges rapidly, then Broyden's method 
may not offer much saving in computer time. Such is the case with 9") (a = 0.5) in 
the present study, where Broyden's method saves only one (two) iteration(s) for a 
convergence of Ryd in E,,,. 

We believe that Broyden's method is superior to the recently proposed perturbative 
approach of Dunlap and the accelerated schemes presented in Dederichs and Zeller. 
Pulay (1980, 1982) has proposed an alternative approach for accelerating the conver- 
gence rate of the quasi-Newton-Raphson procedure. 

It is a great pleasure to acknowledge very helpful discussions with Dr A Zunger and 
Professor P Pulay. 
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